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Abstract—Surveillance of all archaeological and culturally
relevant sites can be a tremendous endeavour for most local
authorities, which are frequently understaffed to prevent van-
dalism or plunder activities in or around all those sites which
are under their purview.

As such, the need for employing robust, persistent autonomous
robotic solutions in the scope of preemptive surveillance is
becoming very evident. The use of UAVs, equipped with different
types of sensor payloads, is key to combat the destruction of
our common cultural heritage, as they can provide constant
surveillance at a fraction of the cost of a human resource.

The SHIELD project framework allowed for the collection of a
large set of aerial surveillance footage consisting of both RGB and
Thermal imagery that will form the basis for the development of
future object detection algorithms. In this paper, we layout the
dataset construction and present a first approach to the aerial
detection of people and vehicles using a learning-based object
detector, as well as a visual tracking algorithm.

Index Terms—Deep Learning, Robotic Perception, Object De-
tection

I. INTRODUCTION

Archaeological sites in remote areas, even those classified as
UNESCO world heritage sites, are subject to abandonment and
at mercy of vandalism and/or plunder activities [1]. To cope
with this problem, law enforcement agencies require the use of
more automated means of surveillance, that can preemptively
detect and alert to the presence of intruders and/or illegal
activities. This is particularly relevant at night, which is
when most vandalism and plundering activities occur and
human resources are most scarcely available. The development
of such systems is thus an urgent necessity around globe,
especially in countries where the amount of archaeological
and/our culturally relevant sites is too large to have permanent
physical human surveillance.

Unmanned Aerial Vehicles are becoming ubiquitous in
today’s aerial surveillance applications. They can provide
an enhanced area coverage compared to ground surveillance
systems and therefore are a key component nowadays in law
enforcement applications.

Following the framework of the SHIELD project [1], a UAV
(i.e. a drone) equipped with a gimbal with visual and infrared
imaging capabilities, was developed as a potential solution to
provide surveillance capabilities to remote archaeological sites
in Cyprus. The drone used AI-based visual detection solutions
for detecting and classifying intruders, e.g., persons, cars, and
possible plunder activities such as night excavations.

Fig. 1. Shield surveillance UAV.

Our AI-based approach utilizes a learning-based object
detection scheme and object tracking framework. This research
topic is currently a very active topic in the AI and robotics
communities and different solutions have surfaced in the past
years.

II. STATE-OF-THE-ART

Before deep learning took off in 2013, almost all object
detection was done through classical vision-based and machine
learning techniques. Common ones included SIFT (scale-
invariant feature transforms) [2], and histogram of oriented
gradients [3].

A. Object Detection

Those early approaches would detect a number of common
salient features across the image, such as corners and edges
and classify their most prominent clusters using some sort of
ML algorith such as logistic regression, color histograms, or
random forests. In the present, deep learning-based techniques
vastly outperform these, and are commonplace in most high-
performance object detection systems.

Deep learning-based approaches use neural network archi-
tectures like RetinaNet [4], YOLO (You Only Look Once)[5],
SSD (Single Shot Multibox detector) [6], which are single-
stage object detectors. Region proposals algorithms, or two
stage detectors like R-CNN[7] or Fast-RCNN [8], work by
first extracting ROIs (Regions of interest), and then classify
and regress their class labels.



B. Object Tracking

Object tracking aims at estimating not only the bounding
boxes but also the individual identity of each object in video
sequence. It takes in a set of initial object detections, develops
a visual model for the objects, and tracks the objects as they
move around. Furthermore, object tracking enables us to assign
a unique ID to each tracked object, making it possible for us
to count unique objects in a video.

Simple Online And Realtime Tracking (SORT)[9] is a
seminal example of an object tracking algorithm. SORT uses
the position and size of the bounding boxes for both mo-
tion estimation and data association through a sequence of
frames.The IOU metric and the Hungarian algorithm [10] are
utilized for choosing the optimum box association.

Despite achieving overall good performance in most scenar-
ios, in terms of tracking precision and accuracy, SORT suffers
from a high number of identity switches and can struggle in
to deal with for example occlusions. To overcome these limi-
tations DeepSORT[11] replaces the association metric with a
more informed metric that combines motion and appearance
information.

III. DATASET CONSTRUCTION

In MONET [12], the construction of a large LWIR dataset
was presented as a tool to study the problem of object localisa-
tion and behaviour understanding of targets undergoing large-
scale variations and being recorded from different and moving
viewpoints. We are proposing an extension of the current avail-
able data to include also RGB imagery in addition to LWIR
data and robotic system metadata , properly synchronized
and independently annotated. Excluding night-time scenarios,
where visual manual annotation is not feasible, a total of
roughly 12k RGB-LWIR image pairs are made available to aid
the development of future multimodal perception algorithms.
We refer to the MONET paper for more information about
data structure and formats.

Fig. 2. Example of annotated RBG image: class people in green, class vehicle
in red

IV. IMPLEMENTATION

In Robotic perception development, is is critical to employ
strategies that amount to a good performance/timeliness bal-

ance. It is of no use to have a high accuracy system that is
not able to deliver predictions at a frame-rate that properly
accompanies the robot dynamics. Furthermore it is also worth
taking into account that robotic systems typically are not
equipped with powerful GPU hardware and thus we are limited
in choosing the object detection framework to employ.

A. Object Detection

Taking all the aforementioned information into regard, we
chose the YoloV7 [13] framework as our object detector. As
was to be expected, due to the singular nature of the data,
captured at high altitude with varying moving viewpoints,
the pretrained model on ImageNet was not enough for our
use case. As such, we performed a transfer-learning strategy,
finetuning the model to our data type, using a train-test-split
across our dataset of 50-40-10 %.

In addition, a data augmentation pipeline was introduced in
the framework, making use of rotations, translations, shifts
and the introduction of gaussian blur samples. All in all,
the volume of training data was augmented fivefold, adding
robustness to the visual detection system.

It is also worth noting that we have two different scenarios
in our data, namely ”dirtroad” and ”runway” data. This data
was evenly split across our training split.

Fig. 3. Illustration of model prediction of vehicle instance

Evaluation of the system in the testing split reached a 82%
Mean Average Precision result, with almost the error coming
from missed or erroneous people detections, with close to
perfect vehicle detections. The most reasonable explanation
is that people bounding boxes are mostly small to tiny targets
representing just a handful of pixels, and thus prone to higher
percentual errors when calcuting the bounding box error rate.

B. Object Tracking

At this stage, the next logical step to construct a functional
object tracker was to develop a bounding box association
scheme, that can track object detections through time and keep
unique object identifiers. To achieve this, a version of the
Hungarian Algorithm Association was employed. The Hun-
garian algorithm works by minimizing a cost matrix between
subsequent image’s object detections. Typically, this matrix
is constructed by computing the IoU cost for all predicted



TABLE I
BENCHMARK AVERAGE PROCESSSING SPEED IN MILLISECONDS (MS)

Inference Non-Maximum Supression Topic Publication Total
Ryzen 7 294.061 ±12.551 0.285 ±0.451 1.232 ±0.257 295.579
RTX 3060 13.130 ±0.002 0.266 ±0.230 1.130 ±0.380 14.525
Nvidia Jetson (15W) 134.503 ±2.894 1.993 ±1.452 2.791 ±2.120 139.256
Nvidia Jetson (30W) 84.720 ±5.997 1.372 ±1.038 2.044 ±1.534 88.137
Nvidia Jetson (50W) 37.270 ±1.562 1.169 ±1.051 3.240 ±1.601 41.680
Nvidia Jetson (MaxN) 26.050 ±1.295 0.869 ±0.756 2.483 ±1.268 29.402

matches and minimizing to find the beast association between
detections. Detections are only accepted as matches if their
IoU cost is bigger than a threshold that can be tuned to specific
use cases.

In our implementation, this cost matrix consist not only of
an IoU cost but a coupound sum between 3 similarity cost
functions:

1) IoU cost: The standard formulation typically employed.
2) Linear Sanchez-Matilla cost [14]
3) Exponential Yu Cost [15]
The combination of the three provides a more smooth

and robust association, that will in term contribute to better
results and less dropped trackers. ID switches also occur less
frequently.

The tracking system is still able to achieve real-time per-
formance in a normal computer, running smoothly over video
sequences, which was always an essential requisite for the
system. The system keeps track of individual ID’s until they
are not present in the image (see illustration on fig.4).

Fig. 4. Example ID instances in people detections

C. Real-time performance on embedded devices

In order to establish the suitability of the developed algo-
rithms for real time archaeological surveillance , an assessment
of the real-time performance was needed. Accounting for
the computing requirements needed for Deep Learning-based
perception, the adoption of a GPU embedded device became
necessary. The Nvidia Jetson Orin platform was chosen as the
subject of our experiments, as it is currently the standard for
real-time performance on embedded GPU devices for Deep
Learning apllications.

In order to understand our requirements for the integration
of the embedded GPU platform, we ran a hardware-on-the-
loop simulation using the Nvidia Jetson Orin Development
Kit and the real-world data collected on our field mission. Our
object detection pipeline was deployed on ROS and processing
speeds were logged throughout the pipeline as can be observed
in table I.

The Nvidia Jetson Orin Development Kit has 4 different
power settings, which allows us to understand how to project
the requirements for future integration in Robotic applications.
Table I shows the real-time performance of the object Detec-
tion algorithm, comparing between laptop hardware (both CPU
and discrete GPU) and the different Jetson power settings. Sig-
nificant performance gains can be observed relative to CPU-
only implementation, thus reinforcing the idea that embedded
dedicated GPU’s massively improve on-board processing for
Deep Learning real-time inference. This conclusion holds truth
even for lower power settings, including 15W PoE connection.

V. CONCLUSIONS

Even though the algorithm is its early stages of development
and shall still be finetuned to unlock greater levels of per-
formance, we show the applicability and suitability of visual
object detection and tracking of people and vehicle targets in
aerial imagery captured via UAV.

We show that even though the detection of such small targets
at such a great altitude is not an easy feat for an object
detection algorithm, we are able to achieve an accuracy of
roughly 82 % using a finetuned YOLO algorithm.

From there, a Hungarian algorithm approach was leveraged
for the task of association of visual detections and tracking
over time.

VI. FUTURE WORK

Implementing data fusion from different sensors, in this
case making use of both RGB and LWIR collected data,
could massively improve the accuracy and robustness of our
object detection algorithms. Which is particularly beneficial
for the case of UAVs equipped with different types sensors,
where diverse information about the environment is being
captured simultaneously and synchronously, enabling a more
comprehensive environment perception and thus object detec-
tion. We intent to pursue such a strategy in the near future,
so as to enhance the perception capabilities of the SHIELD
surveillance UAV.
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